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Figure: Koppen-Geiger map of North America (Peel et. al.)
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L Problems with Képpen-Geiger

m Climate depends on more than temperature and
precipitation.

m Can only resolve land.
m Does not adapt to changing climate.
m The cut-offs in model are, to some extent, arbitrary.

m No universal agreement to how many classes there should be.
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L Problems with clustering

m Dependence on algorithm of choice and hyperparameters.
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Figure: Many clusterings combined into a single consensus
clustering.

m Clustering ill-posed - lack measurement of “trust”.

m Dependence on “hidden parameters” - scale of data.
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L Discrete Wavelet Transform and Mutual Information

m The DWT splits a signal
into high and low

frequency

m Low temporal signal .
captures climatology
(seasons, years, decades), R
while low spatial signal Spce
captures regional Time

features(city, county, ;
state). e -

Tensor
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L Discrete Wavelet Transform and Mutual Information

m The DWT splits a signal
into high and low
frequency

m Low temporal signal
captures climatology
(seasons, years, decades),
while low spatial signal Spce
captures regional Time
features(city, county,
state). il 2

Tensor

Definition

Given partitions of data U = {Uj};?:l, V= {V}}ézl, the

Mutual Information NZ(U, V) measures how knowledge of
one clustering reduces our uncertainty of the other.
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L L15 Gridded Climate Dataset - Livneh et. al.

time = 1982-01-16

latitude [degrees_north]
=
Tmin [C]

-120 -110 -100 —90 —80 =70
longitude [degrees_east]

m Gridded climate data set of North America.

m Grid cell is monthly data from 1950-2013, six kilometers
across.

m Available variables used: precipitation, maximum
temperature, minimum temperature.
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1 Solution

Leverage discrete wavelet transform to classify across a
multitude of scales.

Use information theory to discover most important scales to
classify on.

Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.

Dataset

Clustering

[Cluster ] ———




Multiresolution Cluster Analysi Add i Trust in Climate C ifications
LCOHI‘SE»GI in Clustering (CGC)

L The Algorithm

[©)
& s

5
X |

L1 iy
Xy, |i

i iy




Multiresolution Cluster Analysi d i Trust in Climate C ifications
LCOHI‘SE»GI in Clustering (CGC)

L The Algorithm

D ®
- @
X |i
= ()
Xy ig
1] i
pwr @
o b




Multir s ing st in Climate Cl. cations
L Coarse-Grain Cluste ing (CGC)

L The Algorithm

O ®
pwT @
A |is (©)
i
DWT
— Stack
X i
L1 iy
DWT
X, |a I




Multir s ing st in Climate Cl. cations
L Coarse-Grain Cluste ing (CGC)

L The Algorithm

D )
A1 |is & @
X is _Yeeorize NI
1] i
pwT @
& |k
i) iy




Multir s ing st in Climate Cl. cations
L Coarse-Grain Cluste ing (CGC)

L The Algorithm

JELCHI. )
pwT @
I—— ®
X i @ ®
i %
DWT
— @ Stack Vectorize Cluster
X is
L1 iy
DWr @
& |k




Multir s ing st in Climate Cl. cations
L Coarse-Grain Cluste ing (CGC)

L The Algorithm

®

PR ®
DWT
— Stack Vectorize Cluster Label




Multiresolution Cluster Ana Add ng Trust in Climate Classifications
LCoarse»Gra.in Clustering (CGC)
LResults - Effect of Coarse-Graining

Figure: CGC: K-means k = 10, (45,4;) = (1,1)



Multiresolution Cluster Ana Add ng Trust in Climate Classifications
LCoarse»Gra.in Clustering (CGC)
LResults - Effect of Coarse-Graining

Figure: CGC: K-means k = 10, (45,4;) = (4,1)



Multiresolution Cluster Ana Add ng Trust in Climate Classifications
LCoarse»Gra.in Clustering (CGC)
LResults - Effect of Coarse-Graining

Figure: CGC: K-means k = 10, (45,4;) = (1,1)



Multiresolution Cluster Ana. d ng Trust in Climate Classifications

LCoarse»Gra.in Clustering (

Figure: CGC: K-means k = 10, (¢5,4:) = (1,6)



Multiresolution Cluster Ana Add ng Trust in Climate Classifications
LCoarse»Gra.in Clustering (CGC)
LResults - Effect of Coarse-Graining

Figure: CGC: K-means k = 10, (45,4;) = (1,1)



Multiresolution Cluster Ana Add ng Trust in Climate Classifications
LCoarse»Gra.in Clustering (CGC)
LResults - Effect of Coarse-Graining

Figure: CGC: K-means k = 10, (¢5,4:) = (4,6)



Multiresolution Cluster Analysis—Add ng Trust in Climate Cla cations
Ll\lutual Information Ensemble Reduce (MIER)
LProp 1 Solution

Leverage discrete wavelet transform to classify across a multitude
of scales.

Use information theory to discover most important
scales to classify on.

Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.

Dataset

Clustering
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Ll\Iutua.l Information Ensemble Reduce (MIER)

LResults - Example for K-means K=10
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Figure: Results from graph cut algorithm. The highlighted resolutions
are the final ensemble. Vertical number = [, horzontal bar = [;.
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Clustering and Trust Algorithm

1 Solution

Leverage discrete wavelet transform to classify across a multitude
of scales.

Use information theory to discover most important scales to
classify on.

Taking these scales, combine classifications to produce a
fuzzy clustering that assess the trust at each point.

Dataset

Clustering

[Cluster ] ———
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Consensus Clustering and Trust Algorithm

L The Algorithm

o [, ===, m]
H [ L, ]
©)
Class Labels { 0 ’...' } Signals [ ,m,=, 1=cC
[ ]
[ ]

— e e—f
I
(@]
s




Multiresolution Cl i y. i ifications

LConsensus Clustering and Tru

L The Algorithm

—_—> Signals [ ,m,-- m]=C
[

W Class Labels
|
{

d(m,m, e, LI e, ]):0,8
A

d(m, w0, 1L s, ) =02
VS
VS

d([m,m -, Lim, e, ])=0,1

Distance from Signals

@



st in Climate

Consensus Clustering and Trust Algorithm

L The Algorithm

\ [m, 0,0, m]
[, e, ]
W Class Labels L +™: "]

—)[ S e, ]
1 [ o]
[, ]
l -

d(m,m, e, LI e, )=0.8
VS

d([ B ]’[ Gl ])=0'2 Assign Labels
V:S and Trust
VS

d(m,m,--,u][m,m,--,m]) =0.1

Distance from Signals

@

ions

Signals

M=, ] — (C,,08)

, e, ] — (C,075)

]— ;10

Q)



Multiresolution Cluster Analysis—Addressing Trust in Climate Classifications
L Consensus Clustering and Trust Algorithm
LResults - Example for K-means K=10

Figure: Consensus clustering from reduced ensemble of clusters for
k=10, along with the trust. Grey = multi-class. Darker hue = lower
trust.
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Multiresolution Clus

Lo

onclusion

Summa;

m The DWT brings forth
structure hidden at
different scales within the
data.

m Mutual information allows
us to effectively represent
the diversity across all
scales.

m Using this reduced
ensemble, we produce a
fuzzy clustering that has
an interpretable trust
metric at each point in
space.
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L Conclusion

L Results - Effect of k

Figure: CGC: K-means k = 4, ({5, 4:) = (2,3)
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Figure: CGC: K-means k = 8, ({5, 4;) = (2,3)
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L Conclusion

L Results - Effect of k

Figure: CGC: K-means k = 12, ({,,4;) = (2,3)
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Figure: CGC: K-means k = 16, (45,4:) = (2,3)
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