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Part I - Machine Learning Safety

and why you should care
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Image Classification on ImageNet
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Figure 1: Top 1 Accuracy on ImageNet over decade



Recent Successes of Machine
Learning /Al

Reinforcement Learning - AlphaGo



Summary

e Neural networks initially trained from 30 million human moves.

e Further trained against itself using reinforcement learning.



Recent Successes of Machine
Learning/Al

Language Models - Generative
Pretrained Transformer 2
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Summary
e Generative unsupervised language model.

e Objective: generate next word given previous words in corpus.



Prompt
A train carriage containing controlled nuclear materials was stolen in

Cincinnati today. Its whereabouts are unknown.
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Model Completion

The incident occurred on the downtown train line, which runs from Covington and Ashland
stations.

In an email to Ohio news outlets, the U.S. Department of Energy said it is working with the
Federal Railroad Administration to find the thief.

“The theft of this nuclear material will have significant negative consequences on public and
environmental health, our workforce and the economy of our nation,” said Tom Hicks, the U.S.
Energy Secretary, in a statement. “Our top priority is to secure the theft and ensure it doesn’t
happen again.”

The stolen material was taken from the University of Cincinnati’s Research Triangle Park
nuclear research site, according to a news release from Department officials.

The Nuclear Regulatory Commission did not immediately release any information.

According to the release, the U.S. Department of Energy’s Office of Nuclear Material Safety
and Security is leading that team’s investigation.

“The safety of people, the environment and the nation’s nuclear stockpile is our highest
priority,” Hicks said. “We will get to the bottom of this and make no excuses.
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Machine Learning Safety?

Correct for the Wrong Reason



A ) Input Image b) “Electric Guitar” p = 0.32

(C) “Acoustic Guitar” p = 0.24 (d) “Labrador” p = 0.21

Figure 2: “Why Should I Trust You?” Explaining the Predictions of Any
Classifier - Riberio et. al



(a) Husky classified as wolf (b) Explanation



(C) Husky classified as wolf (d) Explanation

Before After
Trusted the bad model 10/27  3/27
Snow as potential feature 12/27  25/27




Machine Learning Safety?

Misaligned Rewards



Figure 3: OpenAl CoastRunners misspecified reward function


https://twitter.com/i/status/1088800359756283904

Machine Learning Safety?

Nothing is wrong...but I hate the
result...
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Prompt
Recycling is good for the world.

NO! YOU COULD NOT BE MORE WRONG!!
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One of the best ways to start is to look at the process of creating a paper product.
When you make a paper product, it is basically a long chain of materials.
Everything from the raw materials (wood, cardboard, paper, etc.), to the reagents
(dyes, solvents, etc.) to the printing equipment (chemicals, glue, paper, ink, etc.),
to the packaging, to the packaging materials (mercury, chemicals, etc.) to the
processing equipment (heating, cooling, etc.), to the packaging materials, to the
packaging materials that are shipped overseas and to the packaging materials that
are used in the United States.
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One of the best ways to start is to look at the process of creating a paper product.
When you make a paper product, it is basically a long chain of materials.
Everything from the raw materials (wood, cardboard, paper, etc.), to the reagents
(dyes, solvents, etc.) to the printing equipment (chemicals, glue, paper, ink, etc.),
to the packaging, to the packaging materials (mercury, chemicals, etc.) to the
processing equipment (heating, cooling, etc.), to the packaging materials, to the
packaging materials that are shipped overseas and to the packaging materials that
are used in the United States. Each step along the way creates tons of waste that
we constantly have to clean up. The process of making a paper product is a very
wasteful one. But the end result is something that all of us need to consume. And
if we want to keep the recycling process running efficiently, then we really need to
think about each and every step that goes into making a paper product.



Machine Learning Safety?

Challenges With Current Paradigm
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Examples
e Explainable or transparent - interpretable decisions

e Goodhart’s Law: “When a measure becomes a target, it
ceases to be a good measure”

e Human heuristics and unknown assumptions - Loss

functions and optimization schemes

e Alignment - Pursued actions not calibrated with designers
(perhaps informally specified) objective

e Data - hidden structure, low signal to noise
e Adversarial robustness - weakness to distribution shifts

o 7.



Part 1I - Applications to the
Climate Sciences

developing robust, interpretable clustering



Background



Background

Koppen-Geiger Model



Figure 4: Koéppen-Geiger map of North America (Peel et. al.)
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Problem

e Climate depends on more than temperature and

precipitation.

Can only resolve land.

Does not adapt to changing climate.

The cut-offs in model are, to some extent, arbitrary.

e No universal agreement to how many classes there should be.



Background

Clustering
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e Many different methods for clustering
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e Many different methods for clustering

e Given k € N, K-means seeks to minimize inner cluster

variance:
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Problem

e Dependence on algorithm of choice and hyperparameters.

/—m
Cl Consensus
uster 2 Clustering

Lm

Figure 5: Many clusterings combined into a single consensus

clustering.

e Clustering ill-posed - lack measurement of “trust”.

e Dependence on “hidden parameters” - scale of data.
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1. Leverage discrete wavelet transform to classify across a multitude
of scales.

2. Use information theory to discover most important scales to
classify on.

3. Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.
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Preliminary Tools

Discrete Wavelet Transform and Mutual
Information
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e The DWT splits a signal
into high and low

frequency

e Low temporal signal . .

captures climatology

(seasons, years, decades), ey

while low spatial signal P
captures regional

features(city, county, Teor
state).

Definition
Given partitions of data U = {Uj}le, V= {Vj}§~:1a the
Mutual Information NZ(U,V) measures how knowledge of

one clustering reduces our uncertainty of the other.



Preliminary Tools

L15 Gridded Climate Dataset - Livneh
et. al.



time = 1982-01-16

|atitude [degrees_north]
=
Tmin [C]

-120 -110 -100 —90 —80 —70
longitude [degrees_east]

e Gridded climate data set of North America.
e Grid cell is monthly data from 1950-2013, six kilometers

aCross.

e Available variables used: precipitation, maximum

temperature, minimum temperature.



Coarse-Grain Clustering (CGC)




Solution

1. Leverage discrete wavelet transform to classify across a
multitude of scales.

2. Use information theory to discover most important scales to
classify on.

3. Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.
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Coarse-Grain Clustering (CGC)

The Algorithm
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Coarse-Grain Clustering (CGC)

Results - Effect of Coarse-Graining



Figure 6: CGC: K-means k = 10, (4,,4,) = (1,1)



Figure 7: CGC: K-means k = 10, (4,,4,) = (2,1)



Figure 8: CGC: K-means k = 10, (¢,,4,) = (4,1)



Figure 9: CGC: K-means k = 10, (¢,,4,) = (1,1)



Figure 10: CGC: K-means k = 10, (¢, 4;) = (1, 3)



Figure 11: CGC: K-means k = 10, (¢5,¢;) = (1,6)



Figure 12: CGC: K-means k = 10, (¢,,¢;) = (1,1)



Figure 13: CGC: K-means k = 10, (¢5,¢;) = (4,6)



Mutual Information Ensemble
Reduce (MIER)




Solution

1. Leverage discrete wavelet transform to classify across a multitude
of scales.

2. Use information theory to discover most important
scales to classify on.

3. Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.
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Mutual Information Ensemble
Reduce (MIER)

The Algorithm
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Mutual Information Ensemble
Reduce (MIER)

Results - Example for K-means K=10
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Consensus Clustering and Trust
Algorithm




Solution

1. Leverage discrete wavelet transform to classify across a multitude
of scales.

2. Use information theory to discover most important scales to
classify on.

3. Taking these scales, combine classifications to produce a
fuzzy clustering that assess the trust at each point.
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Consensus Clustering and Trust
Algorithm

The Algorithm
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Consensus Clustering and Trust
Algorithm

Results - Example for K-means K=10



Figure 15: Consensus clustering from reduced ensemble of clusters for

k=10, along with the trust. Grey = multi-class. Darker hue = lower

trust.
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Summar
e The D%VT brings forth

structure hidden at
different scales within the

data.
e Mutual information allows

us to effectively represent
the diversity across all

scales.

e Using this reduced
ensemble, we produce a
fuzzy clustering that has
an interpretable trust

metric at each point in

space.
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Extra

Mutual Information



Let U = {Uj}é?:l, V= {Vj}éz1 be two partitions of the data
X ={zi}i.

Entropy H(U) is average information (e.g., bits) needed to
encode the cluster label for each data points of U.

The conditional entropy H(U|V') denotes the average
amount of information needed to encode U if V' is known.
Mutual Information Z(U, V') measures how knowledge of

one clustering reduces our uncertainty of the other:
Z(U, V) =H(U) — H(U|V).

Assume points of X are sampled uniformly. Then,
_ vl

2. probability z,y € X satisfy x € U;, y € Vj is

1. probability x € X in cluster U; is p(z)

_ |UinV;]
p(z,y) = “m
We normalize mutual information:
27(U,V
NI(U,V) = (,V)

HU) +HV)



Extra

Results - Effect of k



Figure 16: CGC: K-means k =4, ({s,¢;) = (2,3)



Figure 17: CGC: K-means k =8, (s, ¢;) = (2,3)



Figure 18: CGC: K-means k = 12, (¢,,¢;) = (2,3)



Figure 19: CGC: K-means k = 16, (¢,,¢;) = (2,3)
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