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Figure: OpenAl CoastRunners misspecified reward function


https://twitter.com/i/status/1088800359756283904
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LClim e Biome Clustering

L L15 Gridded Climate Dataset - Livneh et. al.
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m Gridded climate data set of North America.

m Grid cell is monthly data from 1950-2013, six kilometers
across.

m Available variables used: precipitation, maximum
temperature, minimum temperature.
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Figure: Koppen-Geiger map of North America (Peel et. al.)
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m Climate depends on more than temperature and
precipitation.

m Can only resolve land.
m Does not adapt to changing climate.
m The cut-offs in model are, to some extent, arbitrary.

m No universal agreement to how many classes there should be.
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L Problems with clustering

m Dependence on algorithm of choice and hyperparameters.
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Figure: Many clusterings combined into a single consensus
clustering.

m Clustering ill-posed - lack measurement of “trust”.

m Dependence on “hidden parameters” - scale of data.
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LProp 1 Solution

Leverage discrete wavelet transform to classify across a multitude
of scales.

Use information theory to discover most important scales to
classify on.

Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.
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Leverage discrete wavelet transform to classify across a
multitude of scales.

Use information theory to discover most important scales to
classify on.

Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.
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LProp 1 Solution

Leverage discrete wavelet transform to classify across a multitude
of scales.

Use information theory to discover most important
scales to classify on.

Taking these scales, combine classifications to produce a fuzzy
clustering that assess the trust at each point.

Dataset

Clustering

[Cluster ] ———




(c) (Ls,l) = (3,5) (d) (bs, ) = (4,4)
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Leverage discrete wavelet transform to classify across a multitude
of scales.

Use information theory to discover most important scales to
classify on.

Taking these scales, combine classifications to produce a
fuzzy clustering that assess the trust at each point.

Dataset

Clustering

[Cluster ] ———
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Figure: Consensus clustering from reduced ensemble of clusters for
k=10, along with the trust. Grey = multi-class. Darker hue = lower
trust.
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NME Original

Figure: NMF versus other matrix decompositions (Lee, Seung)
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L Background

m Increasing the number of hidden variables reduces
reconstruction error

m More hidden variables is harder to interpret

m At a certain point, one is fitting noise and not signal
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L Future Work

m NTF is finding
interpretable climate
signals

m As seen with clustering,
scale is playing a role that
we need to analyze

m Can we discover latent

signatures of El Nino/La [
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L Discrete Wavelet Transform

m The DWT splits a signal
into high and low

frequency

m Low temporal signal .
captures climatology
(seasons, years, decades), R
while low spatial signal Spice
captures regional Time
features(city, county,

Dwr Y

state).

Tensor
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Figure: CGC: K-means k = 8, ({5, 4;) = (2,3)
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L Discrete Wavelet Transform

Figure: CGC: K-means k = 12, ({,,4;) = (2,3)
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Figure: CGC: K-means k = 16, (45,4:) = (2,3)
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