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Operator Algebras Generated by Left Invertibles

Background and General Program

Basic Elements of Functional Analysis

Definition

A Hilbert space H is

1 inner product space: 〈·, ·〉 : H ×H → C
2 complete with respect to the norm ‖x‖2 = 〈x, x〉.

A linear map T : H →H is bounded if

‖T‖ := sup
‖x‖≤1

‖Tx‖ <∞.

We set

B(H ) := {T : H →H : T is bounded, linear}.

For T ∈ B(H ), the adjoint T ∗ ∈ B(H ) such that

〈Tx, y〉 = 〈x, T ∗y〉

for each x, y ∈H .
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Background and General Program

Basic Elements of Functional Analysis

Example

H = Cn, B(Cn) = Mn, (ai,j)
∗ = (aj,i).

Definition

If F ∈ B(H ) satisfies dim(ran(F )) <∞, F is finite rank. An
operator K ∈ B(H ) is called compact if K is the norm-limit
of finite rank operators. We write

K (H ) := {all compact operators on H }.
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Background and General Program

Basic Elements of Functional Analysis

Definition

Let
H = `2(N) = {(a1, a2, . . . ) :

∑
|an|2 <∞}.

The unilateral shift S ∈ B(H ) is

S(a1, a2, a3, . . . ) = (0, a1, a2, . . . ).

Then
S∗(a1, a2, a3, . . . ) = (a2, a3, a4, . . . ).

Also,

ker(S) = 0, ker(S∗) = span{e1}
S∗S = I

S is isometric: ‖Sx‖ = ‖x‖ for all x ∈H .
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Basic Elements of Functional Analysis

Definition

U ∈ B(H ) is unitary if U∗U = I = UU∗.

Remark

Unitaries correspond to change of orthonormal bases on H .

Definition

V ∈ B(H ) is a partial isometry if V |ker(V )⊥ is isometric

Remark

V preserves orthonormal sets

V models step from one O.N. set to another

V ∗ models step back
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Background and General Program

Basic Elements of Functional Analysis

Let {Vα}α∈A be partial isometries on H .

Each Vα, V
∗
α encode single step dynamics.

Hence Alg{Vα, V ∗α } codifies all finite walks.

Close algebra with respect to ‖ · ‖ to get infinite walks.

Definition

A C*-algebra is a norm-closed sub-algebra of B(H ) that is
also closed under adjoints.

Remark

C*-algebra’s that encode dynamics of groups, groupoids,
graphs, etc. are well studied.
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General Program

Definition

A sequence {fn} in a Hilbert space H is called a frame if there
exists constants 0 < A < B such that for each x ∈H ,

A‖x‖2 ≤
∑
n

|〈x, fn〉|2 ≤ B‖x‖2

We can associate to each frame {fn} a (canonical) dual frame
{gn} such that

x =
∑
n

〈x, gn〉fn
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Background and General Program

General Program

Recall

Unitaries preserve orthonormal bases

Partial isometries preserve orthonormal sets

The adjoint of a partial isometry “walks backwards”

Remark

Invertible operators preserve property of being a frame

Closed range operators (ran(T ) = ran(T )) preserve frames
for closed subspaces

Question

What is the analog of the adjoint for a closed range operator?
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Background and General Program

General Program

Definition

Let T ∈ B(H ) have closed range. There is a unique operator
T † ∈ B(H ) called the Moore-Penrose inverse of T such
that

1 T †Tx = x for all x ∈ ker(T )⊥

2 T †y = 0 for all y ∈ (TH )⊥.

Example

If T is an isometry, then T † = T ∗.

Let T ∈ B(`2) be given by Ten = wnen+1, n ≥ 1. If
0 < c < |wn|, then T has closed range (left invertible) and

T †en =

{
0 n = 1

w−1
n en−1 n ≥ 2
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Operator Algebras Generated by Left Invertibles

Background and General Program

General Program

Program

For each edge e in Γ, pick operators {Te}e∈E1 with closed range
subject to constraints of graph. Analyze the structure of the
operator algebra

AΓ := Alg({Te, T †e }e∈E1).

Remark

Our focus is on representations afforded by the graph
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Let T be a left invertible operator, and T † its Moore-Penrose
inverse. Set

AT := Alg(T, T †).

Question

1 In what way does AT look like the C*-algebra generated by
an isometry?

2 What are the isomorphism classes of AT ?



Operator Algebras Generated by Left Invertibles

Background and General Program

General Program

Focus

Let T be a left invertible operator, and T † its Moore-Penrose
inverse. Set

AT := Alg(T, T †).

Question

1 In what way does AT look like the C*-algebra generated by
an isometry?

2 What are the isomorphism classes of AT ?



Operator Algebras Generated by Left Invertibles

Background and General Program

General Program

Focus

Let T be a left invertible operator, and T † its Moore-Penrose
inverse. Set

AT := Alg(T, T †).

Question

1 In what way does AT look like the C*-algebra generated by
an isometry?

2 What are the isomorphism classes of AT ?



Operator Algebras Generated by Left Invertibles

Isometries and The Toeplitz Algebra

1 Background and General Program
Basic Elements of Functional Analysis
General Program

2 Isometries and The Toeplitz Algebra
Decomposition of Isometries
A Better Representation

3 Left Invertible Operators and Cowen-Douglas Operators
Analytic Left Invertible
Cowen-Douglas Operators

4 Examples and Classification
Compact Operators and the Structure of AT
Examples from Subnormal Operators
Classification for dim ker(T ∗) = 1

5 Future Work



Operator Algebras Generated by Left Invertibles

Isometries and The Toeplitz Algebra

Decomposition of Isometries

Proposition (Wold-Decomposition)

If V ∈ B(H ) is an isometry, then

V = U ⊕ (⊕α∈AS)

where U is a unitary and S is the shift operator. Namely,

H =

⋂
n≥0

V nH

⊕
∨
n≥0

V n ker(V ∗)


and |A| = dim(ker(V ∗)).

Idea

If one wants to analyze C∗(V ) for some isometry V , one needs
to understand C∗(S).
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Isometries and The Toeplitz Algebra

A Better Representation

The functions en(z) := zn for n ∈ Z form an orthonormal basis
for L2(T) with normalized Lebesgue measure.

Definition

The Hardy Space H2(T) is subspace given by

H2(T) := span{en : n ≥ 0}.

Definition

If f ∈ L∞(T), define Mf ∈ B(L2(T)) via

Mf (g) = fg ∀g ∈ L2(T).

The Toeplitz operator Tf ∈ B(H2(T)) is

Tf := PH2(T)Mf |H2(T) .
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Isometries and The Toeplitz Algebra

A Better Representation

Remark

The shift S ∈ B(`2(N)) is unitarily equivalent to
Tz ∈ B(H2(T)).

Hence, C∗(S) ∼= C∗(Tz).

Theorem (Coburn)

We have

C∗(Tz) = {Tf +K : f ∈ C(T),K ∈ K (H2(T))}.

Moreover, if A ∈ C∗(Tz), A = Tf +K for exactly one f ∈ C(T)
and K ∈ K (H2(T)). Further, K (H2(T)) is the unique minimal
ideal of C∗(Tz). Also I − SS∗, I − S∗S ∈ K (H ), yielding

0 K (H2(T)) C∗(Tz) C(T) 0
ι π
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Left Invertible Operators and Cowen-Douglas Operators

Analytic Left Invertible

Remark

General left invertibles have no Wold decomposition:

H 6=

(⋂
n

TnH

)
⊕

(∨
n

Tn ker(T ∗)

)

Example

Let H = `2(N)⊕ `2(Z), and define T ∈ B(H ) as

T =

(
S 0
ι U

)
U is the bilateral shift on `2(Z) and ι is inclusion.

Definition

A left invertible operator T is called analytic if⋂
n

TnH = 0.
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Left Invertible Operators and Cowen-Douglas Operators

Analytic Left Invertible

Remark

If V is an analytic isometry (U = 0 in Wold-decomposition),
dim ker(V ∗) = n and {ei,0}ni=1 is an orthonormal basis for
ker(V ∗), then

ei,j = V j(ei,0)

i = 1, . . . n, j = 0, 1, . . . is an orthonormal basis for H .

Theorem (D-)

Let T be an analytic left invertible with dim ker(T ∗) = n for
some positive integer n. Let {xi,0}ni=1 be an orthonormal basis
for ker(T ∗). Then

xi,j := T j(xi,0)

i = 1, . . . n, j = 0, 1, . . . is a Schauder basis for H .
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Left Invertible Operators and Cowen-Douglas Operators

Cowen-Douglas Operators

Definition

Given Ω ⊂ C open, n ∈ N, we say that R is Cowen-Douglas, and
write R ∈ Bn(Ω) if

1 Ω ⊂ σ(R) = {λ ⊂ C : R− λ not invertible}

2 (R− λ)H = H for all λ ∈ Ω

3 dim(ker(R− λ)) = n for all λ ∈ Ω.

4
∨
λ∈Ω ker(R− λ) = H

Theorem (D-)

Let T ∈ B(H ) be left invertible operator with dim ker(T ∗) = n, for
n ≥ 1. Then the following are equivalent:

1 T is an analytic

2 There exists ε > 0 such that T ∗ ∈ Bn(Ω) for Ω = {z : |z| < ε}

3 There exists ε > 0 such that T † ∈ Bn(Ω) for Ω = {z : |z| < ε}
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Cowen-Douglas Operators

Analytic Model

If R ∈ Bn(Ω), there is a analytic map γ : Ω→H such that
γ(λ) ∈ ker(R− λ).

For each f ∈H , define a holomorphic function f̂ over
Ω∗ := {z : z ∈ Ω} via

f̂(λ) = 〈f, γ(λ)〉.

Let ”H = {f̂ : f ∈H }. Equip with 〈f̂ , ĝ〉 = 〈f, g〉.
Then U : H → ”H via Uf = f̂ is unitary, and

(UTf)(λ) = 〈Tf, γ(λ)〉 = 〈f, λγ(λ)〉 = (MzUf)(λ)
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Cowen-Douglas Operators

Corollary

T is unitarily equivalent to Mz on a RKHS of analytic
functions ”H .

Under this identification, T † becomes “division by z”.

Lemma

If T ∈ B(H ) is left invertible with dim ker(T ∗) = n, then

Alg(T, T †) =

{
F +

N∑
n=0

αnT
n +

M∑
m=1

βmT
†m : F is finite rank

}
.

Heuristic

AT is compact perturbations of of multiplication operators with
symbols Laurent series centered at zero.
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Compact Operators and the Structure of AT

Theorem (D-)

If T is an analytic left invertible with dim ker(T ∗) = 1, then AT
contains the compact operators K (H ). Moreover, K (H ) is a
minimal ideal of AT .

Corollary

I − TT †, I − T †T ∈ K (H ). Thus, π(T )−1 = π(T †). Hence, we
have the following:

0 K (H ) AT B 0
ι π

where B = Alg{π(T ), π(T †)}.
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Examples from Subnormal Operators

Definition

An operator N ∈ B(H ) is normal if NN∗ = N∗N .

An operator S ∈ B(H ) is essentially normal if π(S) is
normal in B(H )/K (H ).

An operator S ∈ B(H ) is subnormal if it has a normal
extension:

N =

(
S A
0 B

)
∈ B(K )

The operator N is said to be a minimal normal
extension if K has no proper subspace reducing N and
containing H .
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Examples and Classification

Examples from Subnormal Operators

Definition

Let µ be a scalar-valued spectral measure associated to N , and
f ∈ L∞(σ(N), µ).

Define Tf ∈ B(H ) via

Tf := P (f(N)) |H

where P is the orthogonal projection of K onto H .

Theorem (Keough, Olin and Thomson )

If S is an irreducible, subnormal, essentially normal operator,
such that σ(N) = σe(S). Then

C∗(S) = {Tf +K : f ∈ C(σe(S)),K ∈ K (H )}.

Moreover, then each element has A ∈ C∗(S) has a unique
representation of the form Tf +K.
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Examples from Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker(S∗) = 1, essentially
normal, subnormal operator with N := mne(S) such that
σ(N) = σe(S).

Set
B = Alg{z, z−1}

on σe(S). Then

AS = {Tf +K : f ∈ B,K ∈ K (H )}

Moreover, the representation of each element as Tf +K is
unique.



Operator Algebras Generated by Left Invertibles

Examples and Classification

Examples from Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker(S∗) = 1, essentially
normal, subnormal operator with N := mne(S) such that
σ(N) = σe(S). Set

B = Alg{z, z−1}

on σe(S). Then

AS = {Tf +K : f ∈ B,K ∈ K (H )}

Moreover, the representation of each element as Tf +K is
unique.



Operator Algebras Generated by Left Invertibles

Examples and Classification

Examples from Subnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker(S∗) = 1, essentially
normal, subnormal operator with N := mne(S) such that
σ(N) = σe(S). Set

B = Alg{z, z−1}

on σe(S). Then

AS = {Tf +K : f ∈ B,K ∈ K (H )}

Moreover, the representation of each element as Tf +K is
unique.



Operator Algebras Generated by Left Invertibles

Examples and Classification

Classification for dim ker(T∗) = 1

Theorem (D-)

Let Ti, i = 1, 2 be left invertible (analytic, dim ker(T ∗i ) = 1) with
Ai := ATi. Suppose that φ : A1 → A2 is a bounded isomorphism.

Then φ = AdV for some invertible V ∈ B(H ). That is, for all
A ∈ A1,

φ(A) = V AV −1

Remark

To distinguish these algebras by isomorphism classes, we need
to classify the similarity orbit:

S(T ) := {V TV −1 : V ∈ B(H ) is invertible}
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Classification for dim ker(T∗) = 1

Remark

To determine S(T ), suffices to identify S(T ∗).

Recall that T ∗ ∈ B1(Ω) for some disc Ω centered at the
origin.

Determining the similarity orbit of Cowen-Douglas
operators is a classic problem.

Theorem (Jiang, Wang, Guo, Ji)

Let A,B ∈ B1(Ω). Then A is similar to B if and only if

K0({A⊕B}′) ∼= Z
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Future Work:

Determine the isomorphism classes for dim ker(T ∗) > 1.

Is Rad(AT /K (H )) = 0?

Any hope for non-analytic left invertibles?

The closure of the similarity orbit of T , S(T ) can be
expressed by spectral, Fredholm, and algebraic properties
of T . If S(T1) = S(T2), is AT1

∼= AT2?

Investigate other algebras that arise from graphs - e.g.
“Cuntz algebra”.
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