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A Hilbert space 7 is
inner product space: (-,-): . x H# — C

complete with respect to the norm ||z||? = (z,z).
A linear map T : 7 — 77 is bounded if

|7 == sup [|Tz| < oo.
Jeli<1

We set

B(H) :={T : A — 7 : T is bounded, linear}.



Definition
A Hilbert space 7 is
inner product space: (-,-): . x H# — C

complete with respect to the norm ||z||? = (z,z).
A linear map T : 7 — 77 is bounded if

|7 == sup [|Tz| < oo.
Jeli<1

We set
B(H) :={T : A — 7 : T is bounded, linear}.
For T € B(H), the adjoint T™* € HB(s) such that
(Tz,y) = (x,T"y)

for each z,y € 7.
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Example

H =C", B(C") = My, (a;i;)* = (a;).

Definition

If F € B(s) satisfies dim(ran(F')) < oo, F is finite rank.



LBasi(: Elements of Functional Analysis

Example

H =C", B(C") = My, (a;i;)* = (a;).

Definition

If F € B(s) satisfies dim(ran(F')) < oo, F' is finite rank. An
operator K € () is called compact if K is the norm-limit
of finite rank operators. We write

H () := {all compact operators on J¢'}.



H = 2(N) = {(ay,az,...) : Z |an|? < 00}
The unilateral shift S € Z(.) is

S<a17a27a3,...) = (0,&1,@2,...).
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Definition
Let

# = 12(N) = {(a,as,...) Z |an|? < 0o}.
The unilateral shift S € Z(.) is

S<a17a27a3,...) = (0,&1,@2,...).

Then
S*(ay,a2,as,...) = (ag,as,aq4,...).
Also,
m ker(S) =0, ker(S*) = span{e; }
m S*S=1

m S is isometric: || Sz|| = ||z| for all z € 2.



U € B(H) is unitary if U*U = =UU*.
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LBasi(: Elements of Functi 1 Analysis

U € B(H) is unitary if U*U = =UU*.

Remark

Unitaries correspond to change of orthonormal bases on 2.

V € B(H) is a partial isometry if V' |,y is isometric

Remark

m V preserves orthonormal sets
m VV models step from one O.N. set to another

m /" models step back



LB'dblL. Elements of Functional Analysis

Let {V4}aca be partial isometries on 7.
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Elements of Functional Analysis

Let {V4}aca be partial isometries on 7.
m Each V,, V] encode single step dynamics.
m Hence Alg{V,, V}} codifies all finite walks.

m Close algebra with respect to || - || to get infinite walks.

A C*-algebra is a norm-closed sub-algebra of () that is
also closed under adjoints.

Remark

C*-algebra’s that encode dynamics of groups, groupoids,
graphs, etc. are well studied.
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A sequence {f,} in a Hilbert space 5 is called a frame if there
exists constants 0 < A < B such that for each x € 57,

Allzl® <Y~ e, fu)l® < Bllz|?



Definition

A sequence {f,} in a Hilbert space 5 is called a frame if there
exists constants 0 < A < B such that for each x € 57,

Allzl® <Y~ e, fu)l® < Bllz|?

We can associate to each frame {f,} a (canonical) dual frame
{gn} such that

n
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m The adjoint of a partial isometry “walks backwards”
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m Unitaries preserve orthonormal bases

m Partial isometries preserve orthonormal sets

m The adjoint of a partial isometry “walks backwards”

Remark

m Invertible operators preserve property of being a frame

m Closed range operators (ran(7") = ran(T")) preserve frames
for closed subspaces

Question

What is the analog of the adjoint for a closed range operator?
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Definition

Let T' € B(H°) have closed range. There is a unique operator
Tt € B() called the Moore-Penrose inverse of T such
that

TTTz = x for all z € ker(T)*
TTy =0 for all y € (TH#)*.
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Definition

Let T' € B(H°) have closed range. There is a unique operator
Tt € B() called the Moore-Penrose inverse of T such
that

TTTz = x for all z € ker(T)*
TTy =0 for all y € (TH#)*.

m If T is an isometry, then 7T = T*.
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neral Program

Let T' € B(H°) have closed range. There is a unique operator
Tt € B() called the Moore-Penrose inverse of T such
that

TTTz = x for all z € ker(T)*
TTy =0 for all y € (TH#)*.

m If T is an isometry, then 7T = T*.

m Let T € B(¢2) be given by Te,, = wpepi1, n > 1. If
0 < ¢ < |wy|, then T has closed range (left invertible) and

Ten { wyle, 1 n>2
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p = m({Tev TeT}eEEl)'
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L General Program

Program

For each edge e in I', pick operators {T¢}.cp1 with closed range
subject to constraints of graph. Analyze the structure of the
operator algebra

p = m({Tev TeT}eEEl)'

Remark

Our focus is on representations afforded by the graph

)
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Focus

Let T be a left invertible operator, and Tt its Moore-Penrose
inverse. Set

Ar = Alg(T,TT).



Let T be a left invertible operator, and Tt its Moore-Penrose
inverse. Set

Ar = Alg(T,TT).

Question

In what way does A7 look like the C*-algebra generated by
an isometry?



Let T be a left invertible operator, and Tt its Moore-Penrose
inverse. Set

Ar = Alg(T,TT).

Question

In what way does A7 look like the C*-algebra generated by
an isometry?

What are the isomorphism classes of Ap?
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Isometries and The Toeplitz Algebra
m Decomposition of Isometries
m A Better Representation



If Ve B(A) is an isometry, then

where U is a unitary and S is the shift operator. Namely,

H=|\V'x ||\ V'iker(V)

n>0 n>0

and |A| = dim(ker(V*)).
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L Decomposition of Isometries

Proposition (Wold-Decomposition)

If Ve B(A) is an isometry, then

where U is a unitary and S is the shift operator. Namely,

and |A| = dim(ker(V*)).

If one wants to analyze C*(V') for some isometry V', one needs
to understand C*(.5).
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L A Better Representation

The functions e, (z) := 2" for n € Z form an orthonormal basis
for L?(T) with normalized Lebesgue measure.
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L A Better Representation

The functions e, (z) := 2" for n € Z form an orthonormal basis
for L?(T) with normalized Lebesgue measure.

Definition

The Hardy Space H?(T) is subspace given by

H*(T) := span{e, : n > 0}.
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d The Toeplitz Algebra

A Better Representation

The functions e, (z) := 2" for n € Z form an orthonormal basis
for L?(T) with normalized Lebesgue measure.

Definition

The Hardy Space H?(T) is subspace given by

H*(T) := span{e, : n > 0}.

If f € L>(T), define My € B(L*(T)) via

My(g) = fg Vg € L*(T).



The Toeplitz Algebra

L A Better Representation

The functions e, (z) := 2" for n € Z form an orthonormal basis
for L?(T) with normalized Lebesgue measure.

Definition

The Hardy Space H?(T) is subspace given by

H*(T) := span{e, : n > 0}.
If f € L>(T), define My € B(L*(T)) via

My(g) = fg Vg € L*(T).

The Toeplitz operator Ty € Z(H?(T)) is

Tf = PH2(T)Mf |H2(T) o
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LA Better Representation

Remark

m The shift S € Z(¢?(N)) is unitarily equivalent to
T, € B(H?(T)).
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Remark

m The shift S € Z(¢?(N)) is unitarily equivalent to
T, € B(H?(T)).
m Hence, C*(5) = C*(T%).
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Remark

m The shift S € Z(¢?(N)) is unitarily equivalent to
T, € B(H?(T)).

m Hence, C*(5) = C*(T%).
Theorem (Coburn)
We have
C*(T,) ={T;+ K : f € O(T),K € #(H*(T))}.

Moreover, if A€ C*(T,), A=T;+ K for exactly one f € C(T)
and K € X (H*(T)).
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Remark

m The shift S € Z(¢?(N)) is unitarily equivalent to
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Theorem (Coburn)
We have
C*(T,) ={T;+ K : f € O(T),K € #(H*(T))}.

Moreover, if A€ C*(T,), A=T;+ K for exactly one f € C(T)
and K € ¢ (H*(T)). Further, # (H?(T)) is the unique minimal
ideal of C*(T%).
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LISOI nd The Toeplitz Algebra
A Better Representation
L A Better R tati

Remark

m The shift S € Z(¢?(N)) is unitarily equivalent to
T, € B(H?(T)).
m Hence, C*(5) = C*(T%).

Theorem (Coburn)
We have
C*(T,) ={T;+ K : f € O(T),K € #(H*(T))}.

Moreover, if A€ C*(T,), A=T;+ K for exactly one f € C(T)
and K € ¢ (H*(T)). Further, # (H?(T)) is the unique minimal
ideal of C*(T,). Also I —SS*,1 —5*S € (),
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nd The Toeplitz Algebra
LA Better Representation

Remark

m The shift S € Z(¢?(N)) is unitarily equivalent to
T, € B(H?(T)).
m Hence, C*(5) = C*(T%).

Theorem (Coburn)
We have
C*(T,) ={T;+ K : f € O(T),K € #(H*(T))}.

Moreover, if A€ C*(T,), A=T;+ K for exactly one f € C(T)
and K € ¢ (H*(T)). Further, # (H?(T)) is the unique minimal
ideal of C*(T,). Also I — SS*,I — S8*S € (), yielding

0 — H(HXT)) —— C*(T,) —~

O(T) 0
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General left invertibles have no Wold decomposition:

H AT | & |\ T" ker(T7)
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L Analytic Left Invertible

Remark

General left invertibles have no Wold decomposition:
H # <ﬂ T"%”) @ (\/ ™ ker(T*))

Example

Let # = (*(N) @ ¢?(Z), and define T € B(H) as

(2 )

U is the bilateral shift on £*(Z) and ¢ is inclusion.



L Analytic Left I

Remark

General left invertibles have no Wold decomposition:

A+ <ﬂ T"/f) @ (\/ ™ ker(T*)>

Example

Let # = (*(N) @ ¢?(Z), and define T € B(H) as

S 0
=0 o)
U is the bilateral shift on £*(Z) and ¢ is inclusion.

A left invertible operator 7" is called analytic if

ﬂ T" # = 0.
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L Analytic Left Inver

Remark

If V is an analytic isometry (U = 0 in Wold-decomposition),
dimker(V*) = n and {e; o}, is an orthonormal basis for
ker(V*), then

ei,j = Vj(€i70)

i=1,...n,j=0,1,... is an orthonormal basis for 7.
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LA’—\xlalytic Left Invertible

Remark

If V is an analytic isometry (U = 0 in Wold-decomposition),
dimker(V*) = n and {e; o}, is an orthonormal basis for
ker(V*), then

ei,j = Vj (6’@'70)

i=1,...n,j=0,1,... is an orthonormal basis for 7.

Theorem (D-)

Let T be an analytic left invertible with dim ker(T™*) = n for
some positive integer n. Let {x;o}l; be an orthonormal basis
for ker(T™*). Then



Op
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LA’—\xlalytic Left Invertible

Remark

If V is an analytic isometry (U = 0 in Wold-decomposition),
dimker(V*) = n and {e; o}, is an orthonormal basis for
ker(V*), then

ei,j = Vj (6’@'70)

i=1,...n,j=0,1,... is an orthonormal basis for 7.

Theorem (D-)
Let T be an analytic left invertible with dim ker(T™*) = n for
some positive integer n. Let {x;o}l; be an orthonormal basis
for ker(T™*). Then

zij =T’ (ip)

i=1,...n, j=0,1,... is a Schauder basis for 7.



Given 2 C C open, n € N, we say that R is Cowen-Douglas, and
write R € B, (Q) if

QCo(R)={ACC:R— Xnot invertible}
(R— N\ = A for all A € Q

dim(ker(R — X)) = n for all A € .
Vicoker(R—\) =



Operators

Given 2 C C open, n € N, we say that R is Cowen-Douglas, and
write R € B, (Q) if

QCo(R)={ACC:R— Xnot invertible}
(R— N\ = A for all A € Q

dim(ker(R — X)) = n for all A € .
Vicoker(R—\) =

Theorem (D-)

Let T € B(H) be left invertible operator with dimker(T*) = n, for
n > 1. Then the following are equivalent:



Operators

Given 2 C C open, n € N, we say that R is Cowen-Douglas, and
write R € B, (Q) if

QCo(R)={ACC:R— Xnot invertible}
(R— N\ = A for all A € Q
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Theorem (D-)

Let T € B(H) be left invertible operator with dimker(T*) = n, for
n > 1. Then the following are equivalent:
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perators

Given 2 C C open, n € N, we say that R is Cowen-Douglas, and
write R € B, (Q) if

QCo(R)={ACC:R— Xnot invertible}
(R— NS = for all X € Q

dim(ker(R — X)) = n for all A € .
Vicoker(R—\) =

o]

Theorem (D-)

Let T € B(H) be left invertible operator with dimker(T*) = n, for
n > 1. Then the following are equivalent:

T is an analytic
There exists € > 0 such that T* € B, (Q) for Q ={z:|z| < €}



perators

Given 2 C C open, n € N, we say that R is Cowen-Douglas, and
write R € B, (Q) if

QCo(R)={ACC:R— Xnot invertible}
(R— NS = for all X € Q

dim(ker(R — X)) = n for all A € .
Vicoker(R—\) =

o]

Theorem (D-)

Let T € B(H) be left invertible operator with dimker(T*) = n, for
n > 1. Then the following are equivalent:

T is an analytic
There exists € > 0 such that T* € B, (Q) for Q ={z:|z| < €}
There exists € > 0 such that T € B,(Q) for Q = {z:|z| < ¢}



Operator Alg

ors and Cowen-Dougl Dperators

L Cowen-Douglas Operators

m If R € B,(2), there is a analytic map ~ :  — % such that
v(A) € ker(R — ).
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L Cowen-Douglas C

m If R € B,(2), there is a analytic map ~ :  — % such that
v(A) € ker(R — ).

m For each f € 2, define a holomorphic function f over
O :={z:2€Q} via

FO) = (£,70)-



perators

L Cowen-Douglas Op

Analytic Model

m If R € B,(2), there is a analytic map ~ :  — % such that
v(A) € ker(R — ).

m For each f € 2, define a holomorphic function f over
O :={z:2€Q} via

FO) = (£,70)-

m Let 7 = {f:f e Equip with (f,3) = (f,g).



Dperators

L Cowen-Douglas Operators

Analytic Model

m If R € B,(2), there is a analytic map ~ :  — % such that
v(A) € ker(R — ).

m For each f € 2, define a holomorphic function f over
O :={z:2€Q} via

FO) = (£,7(N)-
m Let 7 = {f:f e Equip with (f,3) = (f,g).
m Then U : # — H via Uf = f is unitary, and

UTFHA) =(Tf,7N) = (£, (V) = QLU
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L Cowen-Dou Operators

m T is unitarily equivalent to M, on a RKHS of analytic
functions .



Dperators

L Cowen-Dou Operators

m T is unitarily equivalent to M, on a RKHS of analytic
functions .

m Under this identification, TT becomes “division by z”.



Op or Algeb
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LCuweu—Duugla, Ot

Corollary

m T is unitarily equivalent to M, on a RKHS of analytic
functions .

m Under this identification, TT becomes “division by z”.

Lemma

If T € B(H) is left invertible with dimker(T™) = n, then

N M
Alg(T, T") =< F + ZanT" + Z BmTt™ : F is finite rank
n=0 m=1



Corollary

m T is unitarily equivalent to M, on a RKHS of analytic
functions .

m Under this identification, TT becomes “division by z”

Lemma

If T € B(H) is left invertible with dimker(T™) = n, then

Alg(T, T") =< F + Z o, T + Z BT F is finite rank

Heuristic

27 is compact perturbations of of multiplication operators with
symbols Laurent series centered at zero.
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Theorem (D-)

If T is an analytic left invertible with dimker(T*) = 1, then Ap
contains the compact operators K (). Moreover, K () is a
minimal ideal of Ap.



by Left Invertibles

ructure of A

Theorem (D-)

If T is an analytic left invertible with dimker(T*) = 1, then Ap
contains the compact operators K (). Moreover, K () is a
minimal ideal of Ap.

Corollary

I-TT'I—-T'T € # (). Thus, n(T)~ = n(T").



Theorem (D-)

If T is an analytic left invertible with dimker(T*) = 1, then Ap
contains the compact operators K (). Moreover, K () is a
minimal ideal of Ap.

Corollary

I-TT'I-T'T € # (). Thus, m7(T)~' = n(T"). Hence, we
have the following:

[2 s

0— #(#) A B 0

where B = Alg{m(T),n(T1)}.
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LExampl 5 from Subnormal Operators

m An operator N € #() is normal if NN* = N*N.



Definition

m An operator N € #() is normal if NN* = N*N.

m An operator S € #(J€) is essentially normal if 7(95) is
normal in B(H) | H (H).
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normal Operators

Definition

m An operator N € #() is normal if NN* = N*N.
m An operator S € #(J€) is essentially normal if 7(95) is

normal in B(H) | H (H).
m An operator S € #(J) is subnormal if it has a normal

extension:
S A
N = < 0 B) € 93(% )



1ormal Operators

Definition

m An operator N € #() is normal if NN* = N*N.

m An operator S € #(J€) is essentially normal if 7(95) is
normal in B(H) | H (H).

m An operator S € #(J) is subnormal if it has a normal

extension:
S A
N = < 0 B) € 93(% )

The operator NN is said to be a minimal normal
extension if .Z has no proper subspace reducing N and
containing 7.
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Examp nd C cation

LExamples from Subnormal Operators

Definition

Let u be a scalar-valued spectral measure associated to IV, and
f € LX(a(N), ).




L Examples from bnormal Operators

Definition

Let u be a scalar-valued spectral measure associated to IV, and
f € L>®(o(N), ). Define Ty € B(H) via

Ty = P(F(N)) |

where P is the orthogonal projection of J# onto 7.



Definition

Let u be a scalar-valued spectral measure associated to IV, and
f € L>®(o(N), ). Define Ty € B(H) via

Ty = P(F(N)) |

where P is the orthogonal projection of J# onto 7.

Theorem (Keough, Olin and Thomson )

If S is an irreducible, subnormal, essentially normal operator,
such that o(N) = 0¢(S). Then

CH(S) = {T} + K : f € C(0o(S)), K € X ()},

Moreover, then each element has A € C*(S) has a unique
representation of the form Ty + K.



L Examples from bnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker(S*) = 1, essentially
normal, subnormal operator with N := mne(S) such that
a(N) = oe(9).



L Examples from bnormal Operators

Theorem (D-)

Let S be an analytic left invertible, dim ker(S*) = 1, essentially
normal, subnormal operator with N := mne(S) such that
o(N) = 0e(S). Set

B = %{27 271}

on ge¢(S). Then



Theorem (D-)

Let S be an analytic left invertible, dim ker(S*) = 1, essentially
normal, subnormal operator with N := mne(S) such that
o(N) = 0e(S). Set

B = %{27 271}

on ge¢(S). Then
s ={Ty+K:fec B KecH(HN)}

Moreover, the representation of each element as Ty + K 1is
UNIQUE.
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Theorem (D-)

Let T, i = 1,2 be left invertible (analytic, dimker(1;") = 1) with
A; = Ag,. Suppose that ¢ : Ay — Ay is a bounded isomorphism.
Then ¢ = Ady for some invertible V- € B(). That is, for all
A€ 2Aq,

Pp(A)=VAV !

Remark

To distinguish these algebras by isomorphism classes, we need
to classify the similarity orbit:

S(T) :={VTV~'.V € B(H) is invertible}
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Remark

m To determine S(7'), suffices to identify S(7™).

m Recall that 7 € B1(Q2) for some disc €2 centered at the
origin.

m Determining the similarity orbit of Cowen-Douglas
operators is a classic problem.

Theorem (Jiang, Wang, Guo, Ji)
Let A, B € B1(Q2). Then A is similar to B if and only if

Ko{AeB})=Z
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Any hope for non-analytic left invertibles?

m The closure of the similarity orbit of 7', S(T) can be
expressed by spectral, Fredholm, and algebraic properties
of T. If S(T) = S(Ta), is Ay, = Ap,?




Operato
LFuture

Future Work:

Determine the isomorphism classes for dim ker(7*) > 1.
Is Rad(Rp/ % () = 07

Any hope for non-analytic left invertibles?

The closure of the similarity orbit of 7', S(T) can be
expressed by spectral, Fredholm, and algebraic properties
of T. If S(T) = S(Ta), is Ay, = Ap,?

Investigate other algebras that arise from graphs - e.g.
“Cuntz algebra”.
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